ANALYSIS OF THE IMPACT OF ROAD SAFETY BARRIERS ON REDUCING THE RISK OF DANGEROUS ROAD ACCIDENTS AND THEIR CONSEQUENCES S


ABSTRACT

Savostin-Kosiak D.O., Michalski Jacek. Analysis of the impact of road safety barriers on reducing the risk of dangerous road accidents and their consequences. Visnyk National Transport University. Series «Technical sciences». Scientific and Technical Collection. - Kyiv: National Transport University, 2020. - Issue 1 (46).

The weaknesses of the road systems were analyzed, including dangerous events generated by vehicle getting out of the road and consequent secondary dangerous events such as: driving over a barrier or other dangerous object located next to road or roofing of the vehicle. Particularly, the security, availability of technological solutions for protection barriers, columns and road signs on roads and bridges were considered. The preventive and protective functions of road equipment and engineering objects are given, which are adequate to the specific risk. Failures of safety barriers and road protection barriers and the consequences of their failures for people, properties and the environment were analyzed. Solutions for the construction of road barriers were analyzed in terms of: availability, the degree of reliability of their components and the possibility of maintaining risk within acceptable limits. The scope of fulfillment of required functional features, design methods, modern technological solutions, test methods and certification procedures were analyzed. Functional features of protective barriers regarding: the protection level, displacements and the level of impact intensity were taken into account. Literature point of view on aided design of protective barriers has been included which covers finite element method (method of sum of displacements) with appropriate analysis of forces, torques and displacements with CAD systems including use of LS-DYNA system for events and damage parameters. A large part of the publication deals with modern technological solutions and analyzes including design of protective barriers, modeling of their elements as well as modeling collisions with vehicles, taking into account the impact of the ground.

KEYWORDS: PROTECTION BARRIERS, FAILURES OF PROTECTION BARRIERS, DESIGN METHODS, SECURITY OF PROTECTION BARRIERS.

REFERENCES

  1. Abhijith K.V.; Kumar P. (2019) Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmospheric Environment, 301, 132-147.
  2. Adminaite D., Calinescu T., Jost G., Stipdonk H., Ward H. (2018) Ranking EU progress on road safety. 12th Road safety performance index report. European Transport Safety Council, Brussels.
  3. Al-Thairy H., Wang Y.C. (2014) Simplified FE vehicle model for assessing the vulnerability of axially compressed steel columns against vehicle frontal impact. Journal of Constructional Steel Research, 102, 190-203.
  4. Bera P. (2015) Powiklania septyczne u pacjentow z mnogimi obrazeniami ciala leczonych w Oddziale Anestezjologii i Intensywnej Terapii. Praca doktorska, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, promotor prof. K. Slowinski, Poznan.
  5. Borovinsek M., Vesenjak M., Ulbin M., Ren Z. (2007) Simulation of crash tests for high containment levels of road safety barriers. Engineering Failure Analysis, 14, 8, 1711-1718.
  6. Bujalski M., Sandecki T., Wierzcholski M., Mikolajkow L., Erden K. D. (2012) Cz?sc 1. Wytyczne stosowania drogowych barier ochronnych na drogach wojewodzkich wojewodztwa opolskiego. Zarz^d Drog Wojewodzkich w Opolu, Opole.
  7. Coon B.A., Reid J.D. (2006) Reconstruction techniques for energy-absorbing guardrail end terminals. Accident Analysis and Prevention, 38, 1, 1-13.
  8. de Dianous V, Fievez C. (2006) ARAMIS project: A more explicit demonstration of risk control through the use of bow-tie diagrams and the evaluation of safety barrier performance. Journal of Hazardous Materials, 130, 3, 230-233.
  9. Dyrektywa Parlamentu Europejskiego i Rady 2008/96/WE z listopada 2008 w sprawie zarzadzania bezpieczenstwem infrastruktury drogowej.
  10. U.00.63.735 (2000) Rozporzadzenie Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 r. w sprawie warunkow technicznych, jakim powinny odpowiadac drogowe obiekty inzynierskie i ich usytuowanie.
  11. U. 2015 poz. 1422: Obwieszczenie Ministra Infrastruktury i Rozwoju z dnia 17 lipca 2015 r. w sprawie ogloszenia jednolitego tekstu rozporzadzenia Ministra Infrastruktury w sprawie warunkow technicznych, jakim powinny odpowiadac budynki i ich usytuowanie.
  12. Elmarakbi A., Sennah K., Samaan M., Siriya P. (2006) Crashworthiness of motor vehicle and traffic light pole in frontal collisions. Journal of Transportation Engineering-ASCE, 132, 9, 722-733.
  13. Gabauer D. J., Kusano K. D., Marzougui D., Opiela K., Hargrave M., Gabler H. C. (2010) Pendulum testing as a means of assessing the crash performance of longitudinal barrier with minor damage. International Journal of Impact Engineering, 37, 11, 1121-1137.
  14. Geissler F., Kohnert S., Stolle R. (2018) Designing a roadside sensor infrastructure to support automated driving. Book Series IEEE International Conference on Intelligent Transportation Systems-ITSC, 703-708.
  15. Gutowski M., Palta E., Fang H. (2017) Crash analysis and evaluation of vehicular impacts on W- beam guardrails placed on sloped medians using finite element simulations. Advances in Engineering Software, 112, 88-100.
  16. Hartig J.U., Facchini S., Haller P. (2018) Investigations on lateral vehicle impact on moulded wooden tubes made of beech (Fagus sylvatica L.). Construction and Building Materials, 174, 547-558.
  17. Hollnagel E. (2008) Risk + barriers = safety?. Safety Science, 46, 2, 221-229.
  18. Hu W., Donnell E.T. (2010) Median barrier crash severity: some new insights. . Accident Analysis and Prevention, 42, 6, 1697-1704.
  19. IEC 61508 (2010) Functional safety of electrical/electronic/programmable electronic safety- related systems - Part 1 Part 7. International Electrotechnical Commission, Geneva.
  20. Jamroz K., Antoniuk M., Jelinski L., Wachnicka J., Gronowska K. (2015) Czcstosc i konsekwencje wypadniccia pojazdu z drogi na przykladzie wojewodztwa pomorskiego. Drogownictwo, 4-5, 117-125.
  21. Jamroz K., Budzynski M., Romanowska A., Zukowska J., Oskarbski J. (2019) Experiences and challenges in fatality reduction on polish roads. Sustainability, 11, 4, Article Number: 959.
  22. Jin H., Lundteigen M.A., Rausand M. (2011) Reliability performance of safety instrumented systems: A common approach for both low- and high-demand mode of operation. Reliability Engineering & System Safety, 96, 3, 365-373.
  23. Klasztorny M, Nycz D, Romanowski R K. (2016) Rubber/foam/composite overlay onto guide B of barrier located on road bend. The Archives of Automotive Engineering - Archiwum Motoryzacji, 69, 3, 65-86.
  24. Lu Q., Karimi H.R., Robbersmyr K.G. (2013) A data-based approach for modeling and analysis of vehicle collision by LPV-ARMAX models. Journal of Applied Mathematics, Article Number: 452391.
  25. Maciejewski A., Wyrwich N., Gierasimiuk W., Sakowski R., Kowalski K., Miecznikowski P., Kaszynski A., Kobus Z., Kwiecien-Szczepanska K., Trojanek vel Trojanowski R., Lendner L., Gacparski J. (2014) Wytyczne stosowania drogowych barier ochronnych na drogach krajowych. Generalna Dyrekcja Drog Krajowych i Autostrad. Warszawa, styczen.
  26. Mikolajkow L. (1983) Drogowe bariery ochronne. Wydawnictwa Komunikacji i Lacznosci WKiL, Warszawa.
  27. Miralbes R. (2013) Design of motorcycle rider protection systems using numerical techniques. Accident Analysis and Prevention, 59, 94-108.
  28. Neves R. R., Fransplass H., Langseth M., Driemeier L., Alves M. (2018) Performance of some basic types of road barriers subjected to the collision of a light vehicle. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 6, Article Number: UNSP 274.
  29. Nowakowski T. (2011) Niezawodnosc systemow logistycznych. Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw.
  30. Nycz D.B. (2016) Effect of the B-type guiderail joints of a road barrier on the TB11 and TB32 virtual crash tests. Archiwum Motoryzacji, 71, 1, 73-85.
  31. PN-EN 1317-1:2010 (2010) Systemy ograniczajace drogc - Cz?sc 1: Terminologia i ogolne kryteria metod badan. PKN, Warszawa.
  32. PN-EN 1317-2:2010 (2010) Systemy ograniczajace drogc - Czcsc 2: Klasy dzialania, kryteria przyj?cia badan zderzeniowych i metody badan barier ochronnych i balustrad. PKN, Warszawa.
  33. PN-EN 1317-5+A2:2012 (2012) Systemy ograniczajace drog? - Cz?sc 5: Wymagania w odniesieniu do wyrobow i ocena zgodnosci dotyczaca systemow powstrzymujacych pojazd. PKN, Warszawa.
  34. PN-EN 12767:2008 (2008) Bierne bezpieczenstwo konstrukcji wsporczych dla urzadzen drogowych - Wymagania i metody badan. PKN, Warszawa.
  35. Traffic safety facts - a compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system. National Highway Traffic Safety Administration (NHTSA). Tech. rep., U.S. Department of Transportation, 1994-2015.
  36. Otte D., Haasper C., Eis V., Schaefer R. (2008) Characteristics of pole impacts to side of passenger cars in european traffic accidents and assessment of injury mechanisms - Analysis of German and UK in-depth data. Stapp Car Crash Journal, 52, 2008-P-403.
  37. Sassi S., Sassi A., Ghrib F. (2017) Effect of crushable blockouts on a full-scale guardrail system. International Journal of Crashworthiness, 22, 1, 63-82.
  38. Senthil K.; Rupali S. (2018) Crashworthiness of highway lamp post against vehicle impact. Journal of Materials and Engineering Structures, 5, 4, 371-385.
  39. Sobral J., Guedes S.C. (2019) Assessment of the adequacy of safety barriers to hazards. Safety Science, 114, 40-48.
  40. Soltani M., Topa A., Karim M. R., Sulong N. H. R. (2017) Crashworthiness of G4(2W) guardrail system: a finite element parametric study. International Journal of Crashworthiness, 22, 2, 169-189.
  41. Stankiewicz B. (2015) Wytyczne doboru drogowych barier ochronnych. https://www.google.com/search?q=Wytyczne+doboru+drogowych+barier+ochronnych+Stankiewicz+&ie=ut f-8&oe=utf-8&client=firefox-b (dost?p 2019).
  42. Strona internetowa (2019): http://www.hus-gmbh.com/de/ce-service?id=64.
  43. Strona internetowa (2019): WIMED, Oznakowanie Drog Sp. z o.o., ul. Tarnowska 48, 33-170 Tuchow, Poland, wimed.pl/info@wimed.pl, NIP: 685-230-95-96, Regon: 180188573, Numer rejestrowy: 000033746, Zarejestrowal: Sad Rejonowy Krakow-Srodmiescie XII Wydz. Gosp. KRS, pod nr 0000270367, kapital 31.300.000,00 zl.
  44. Strona internetowa (2019): http://www.v-r-bariery.pl/easyrail_133_pl.html.
  45. Straube F., Pfohl H.-Chr. (2008) Trends und Strategien in der Logistik - Globale Netzwerke im Wan DVV Media Group GmbH/Deutscher Verkehrs-Verlag, Hamburg.
  46. Szczegolowe specyfikacje techniczne, D - 07.05.01. Bariery ochronne stalowe. Generalna Dyrekcja Drog Krajowych i Autostrad Oddzial w Poznaniu.
  47. Szopa T. (2016) Niezawodnosc i bezpieczenstwo. Wydanie 2 zaktualizowane i uzupelnione, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  48. Thilakarathna H.M.I., Thambiratnam D.P., Dhanasekar M., Perera N. (2010) Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment. International Journal of Impact Engineering, 37, 11, 1100-1112.
  49. Thomson R., Fagerlind H., Martinez A. V., Amenguel A., Naing C., Hill J., Hoschopf H., Dupre G., Bisson O., Kelkka M., van der Horst R., Garcia J. (2006) Roadside infrastructure for safer european roads. Project RISER funded by the European Community under the ‘Competitive and Sustainable Growth' Programme (1998-2002), Chalmers University of Technology, report: 28/02/2006.
  50. Zhu A-Z, Xu W., Gao K., Ge H-B, Zhu J-H (2018) Lateral impact response of rectangular hollow and partially concrete-filled steel tubular columns. Thin-Walled Structures, 130, 114-131.
  51. Unarski J., Wach W., Dabczynski Z., Bohatkiewicz J. (2008) Analiza ryzyka wielkosci obrazen w kolizjach z niektorymi obiektami przydroznymi. Informacja Nr 65. Klub Inzynierii Ruchu, Biuro Zarzadu, ul. Lesna 40, 62-081 Przezmierowo k/Poznania. Bochnia - Tuchow - Raciechowice, listopad 2008.
  52. Yang J., Xu G., Cai C. S., Kareem A. (2019) Crash performance evaluation of a new movable median guardrail on highways. Engineering Structures, 182, 459-472.
  53. Whitworth H.A., Bendidi R., Marzougui D., Reiss R. (2004) Finite element modeling of the crash performance of roadside barriers. International Journal of Crashworthiness, 9, 1, 35-43.
  54. Wu W., Thomson R. (2007) A study of the interaction between a guardrail post and soil during quasi-static and dynamic loading. International Journal of Impact Engineering, 34, 5, 883-898.

AUTHOR

Savostin-Kosiak Danylo O., Ph.D in Technical Science, National Transport University, assistant lecturer of the Department of Technical operation of cars and car services, e-mail: daniel_s@ukr.net, tel. +38 (044) 280 56 21, Ukraine, 01010, Kyiv, M. Omelyanovych-Pavlenko str. 1, orcid.org/0000-0002- 8795-5939.

Michalski Jacek, Professor, Doctor of Technical Science, Rzeszow University of Technology, professor of the internal combustion engines and transport department, jmichals@prz.edu.pl, tel.: +48 17 865 1570, 35-959, Rzeszow, Poland, Warsaw Insurgents Boulevard 12, orcid.org/0000-0002- 9745-9453.

REVIEWER

Lubas Janush, Doctor of Technical Sciences, professor, Rzeszow University of Technology, professor of the internal combustion engines and transport department, Rzeszow, Poland.

Posviatenko E.K., Doctor of Technical Sciences, professor, National Transport University, professor of the production, repair and materials science department, Kyiv, Ukraine.


Article language: Ukrainian

Open Access: http://publications.ntu.edu.ua/visnyk/46/283.pdf

Print date: 15.04.2020

Online publication date: 27.10.2020

 


Search